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A Paradigm Shift

* Social media data streams, such as Twitter, are important sources of real-time
and historical global information for science applications, e.g., augmenting
validation programs of NASA science missions such as Global Precipitation
Measurement (GPM).

 Determinant of output tweet quality from our tweet processing infrastructure is
the quality of the tweets retrieved from the Twitter stream.

* Twitter provides a large source of citizen scientists for crowdsourcing. These
contributors of “precipitation tweets” do so either knowingly (“active”) or not
(“passive”). “Active” and “passive” tweets are complementary; “active” tweets
serve to “enrich the Twitter stream.”

* Concept of enriching the Twitter stream is a paradigm shift from the traditional
focus on recruiting citizen scientists.

Passive and Active Tweets

What this paradigm shift enables is
an unbounded approach to
recruitment of citizen scientists, e.g.,
» Secondary school students
» NASA GES DISC Twitter followers
» MmPING reporters

» Rain-sensing
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Machine Learning Archltecture
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Ongoing work to Improve Quality of Tweets (details in next three sections)

e C(Classify documents and images that are
endpoints of links in tweets, to extract additional
information relevant to the tweets.

e Classify Facebook weather posts; convert to
“active tweets”

 Automated Type Recognizer of either document
or image in endpoint of link in tweet. On the
right is our proposal for an informal funding
opportunity at the ESIP 2018 Summer Meeting.
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Classifying Tweet-linked Images (corcoran)

Construct classifier to analyze images for precipitation-related information (e.g.,
there rain in the image? is it a forecast map?)

A Transfer-Learning Approach
* Deep learning models, particularly Convolutional Neural Networks (CNN), have

been shown to be very effective for large-scale image recognition and classification.

* Because a large number of labeled images is required to develop CNN, doing so
from scratch would be very costly in compute and time resources.

* Transfer Learning takes advantage of pre-trained models as a starting point, thus
mitigating the cost of model development for the current task. These reused
models are, in effect, feature extractors, the outputs from which then become
inputs for training smaller, more manageable classifiers.

* For the current task, we used VGG-161 as the feature extractor, by removing the
final fully connected layers, and trained a linear support vector machine (SVM) to
output the final classification (i.e., “precipitation” and “not-precipitation”).
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Confusion matrix of classification on a 90-image test set, split into two
target categories, “precipitation” and “not-precipitation.”

Classifying Tweet-linked Documents (wang)

Use Hierarchical Attention Network (HAN)-based model to classify tweet documents,
i.e., precipitation occurrence, type, and intensity, at given locations and times.

Architecture: Hierarchical Attention Networks?

Word/Sentence Encoder — Embed words to vectors through embedding matrix; apply
bidirectional GRU# to obtain representative, contextual hidden annotations of
words/sentences.
Word/Sentence Attention — Combine learned measure of importance with contextual
word/sentence annotations; more relevant words have greater weighting, and vice
versa. Word Encoder -> Word Attention ->

- : : rd En r- r ntion -
Classification — Softmax*, categorical cross-entropy (" 0 = o

Regression — Softmax, mean squared error Classification/Regression

*Softmax — reduces influence of extreme values by constraining data into the range 0-1 before classification.
#Categorical cross-entropy — used as final layer in classifying data to predefined classes.

Results / Alternate Model Comparisons

Precipitation Occurrence (Yes/No) 83.6%

Precipitation Inference Model Compar

74.2% (£1.5 || I
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Precipitation Type (Rain/Sleet/Snow/Null)  77.4%

Precipitation Intensity (mm/hr)

Model Attention Weight Visualizations
Model places greater importance on darker words during classification / regression.

Example 3: All this snow has us wishing for summer! Sipping

on our beachy 9 Coco Rooibos Chai this morning. ..
https://t.co/123

Example 2: It's chilly outside but so beautiful! Enjoy the snow

Example 1: At 9:04 AM, Deerfield [Franklin Co, MA] HAM day € #staywarm #snowmageddon... hitps:/t co/123

RADIO reports SNOW of 3.00 INCH #BOX https://t.co/123

Sentence-level Attention Weights Visualization:
Word-level Attention Weights Visualization: Sentence-level Attention Weights Visualization:
it ' s chilly outside but so

beautiful !

enjoy the snow day stay warm

all this snow has us wishing for

at <ttme>, deerfield [ franklinco ., ma | <allcaps>ham radio
summer !

</allcaps> reports <allcaps>snow </allcaps> of <number><allcaps> sipping on our beachy P8 coco rooibos chai this

inch </allcaps><hashtag>box </hashtag><url> Word-level Attention Weights Visualization:

Word-level Attention Weights Visualization:
it ' s chilly outside but so beautiful !

enjoy the - day

snowmageddon</hashtag>... <url>

all this Snew has us wishing for summer !

<hashtag>stay warm </hashtag><hashtag> sipping on our beachy #\ coco rooibos chai this morning ... <url>

Classifying Facebook Posts (maksumov)

Construct classifiers to label posts on Facebook weather pages as precipitation
related (e.g., is this post suggesting that it’s snowing right now?)

Data Preprocessing: Cleaning Facebook Posts
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. Original Facebook posts scraped using Python program by minimaxir>

Creating Feature Vectors: TF-IDF (Term Frequency-Inverse Document Frequency)

For each word in a token, multiply together:

 #times the word appears in the token

* Log (# tokens / # tokens with the word)
Converted, messy text data -> numerical data to analyze

Creating a Classifier: Naive Bayes Algorithm

Best label maximizes chances of finding label in - argmax P(c, )np(x c)
training set and finding token's words in label cEC YEX

Results: Classifying the Token’s Words

Naive bayes scores
1 day data

2 day data 90
3 day data 85
80

* More data in training set -> greater label accuracy o

O 70
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300+ training data -> about 80% correct classification g
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Summary

* Paradigm shift from a focus on recruiting citizen scientists to enriching the Twitter
stream enables an unbounded approach to recruitment.

 OQutput tweet quality and quantity from our tweet processing infrastructure is
increased by complementing “passive” tweets from the Twitter stream with
tweets from “active” participants.

* Ongoing work to improve quality of tweets include (1) classifying documents and
images that are endpoints of links in tweets, to extract additional information
relevant to the tweets and (2) classifying Facebook weather posts and converting
them to “active” tweets.
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